45 research outputs found

    Use of Fly Screens to Reduce Campylobacter spp. Introduction in Broiler Houses

    Get PDF
    Fly screens that prevented influx of flies in 20 broiler houses during the summer of 2006 in Denmark caused a decrease in Campylobacter spp.–positive flocks from 51.4% in control houses to 15.4% in case houses. A proportional reduction in the incidence of chicken-borne campylobacteriosis can be expected by comprehensive intervention against flies in broiler production houses

    Flies and Campylobacter Infection of Broiler Flocks

    Get PDF
    A total of 8.2% of flies caught outside a broiler house in Denmark had the potential to transmit Campylobacter jejuni to chickens, and hundreds of flies per day passed through the ventilation system into the broiler house. Our study suggests that flies may be an important source of Campylobacter infection of broiler flocks in summer

    Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models.

    Get PDF
    Campylobacter is the most common cause of foodborne bacterial illness worldwide. Faecal contamination of meat, especially chicken, during processing represents a key route of transmission to humans. There is a lack of insight into the mechanisms driving C. jejuni growth and survival within hosts and the environment. Here, we report a detailed analysis of C. jejuni fitness across models reflecting stages in its life cycle. Transposon (Tn) gene-inactivation libraries were generated in three C. jejuni strains and the impact on fitness during chicken colonisation, survival in houseflies and under nutrient-rich and -poor conditions at 4 °C and infection of human gut epithelial cells was assessed by Tn-insertion site sequencing (Tn-seq). A total of 331 homologous gene clusters were essential for fitness during in vitro growth in three C. jejuni strains, revealing that a large part of its genome is dedicated to growth. We report novel C. jejuni factors essential throughout its life cycle. Importantly, we identified genes that fulfil important roles across multiple conditions. Our comprehensive screens showed which flagella elements are essential for growth and which are vital to the interaction with host organisms. Future efforts should focus on how to exploit this knowledge to effectively control infections caused by C. jejuni.This work was funded by Biotechnology and Biological Sciences Research Council (http://www.bbsrc.ac.uk) grant BB/K004514/1. D.P.W. was funded by a Wellcome Trust (https://wellcome.ac.uk) Infection and Immunity PhD rotation studentship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
    corecore